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STURM -LIO I JV I LLE PROBLEMS WITH SEVERAL PARAMETERS

LAWRENCE TURYN

ABSTRACT

- 
- We consider the regular linear Sturm-Liouville problem (second-

order linear ordinary differen tial equation wi th boundary conditions

at two points x = 0 and x = 1, those condi tions bein g separa ted

and homogeneous) wi th several real parame ters X 1,... ,X~~. Solutions

to this problem correspond to ei genvalues A = (A 1, . . .  , A N ) ly ing

on surfaces in IR N determined by the number of zeroes in (0,1) of

solutions . We descr ibe proper ties of these surfaces , including :

boundedness , and when unbounded , asymp totic direc tions . Using these

proper ties some results are given for the system of N Sturm-Liouville

problems which share only the parame ters A . Sharp resul ts are given

for the system of two problems sharing two parame ters.

The eigensurfaces for a single problem are closely related to

the cone K = (A E I R N : A 1a1(x) + + A~ a~ (x) < 0 for all x in

[0,l]}, par ticularly in questions of boundedness. The cone K and

related objects are discussed , and a result is given which relates

cones with two oscillation conditions known as “Right-Definiteness”

and “Left-Defini t~iess”. AIR - - 
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Section 1: The regular Sturm-Liouville problem with separated ,

homogeneous boundary conditions has been thoroughly studied . Re-

cent authors have considered the generalization of this problem in

which there are eigenvalue parameters A l,...,A N instead of a

single parameter. This problem consis ts of the equation

(1.l.N) (py’)’ + (A 1a1(x) + . . .  X~ a~ (x) + q(x))y = 0,

dx € [0, 1], = , along wi th the boundary conditions

cos u y(0) - sin ~.p(0)y ’(0) = 0
(1.2)

cos ~.y(1) - sin ~~p(l)y’(1) = 0.

To make the problem regular we assume that ~~~~~~~~~~~~~ are

continuous and real-valued and that p is positive and con-

tinuously differen tiable. To make the eigenvalue problem non-

trivial we will always assume that at least one of the a~~’s is

not identically zero. Sometimes we will call the a
3

t s the

coefficien ts.

We will discuss the problem (1.l.N), (1.2), and then we will

apply our results to a system of regular Sturm-Liouville problems

• which share the same parameters A l,...,A N . The resul ts for the

system are part of Multiparameter Oscillation Theory .

• For a non- trivial solution y(x;A ) of (l.l.N) we define

the oscillation number as the number of zeroes in (0,1) of the

I.
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function y(x;X). We define sets Sn 
= (A ° € jj~N : there is a

non- trivial solution y(x;A °) of (l.l.N), (1.2) having oscillation

number n}. If A € Sn for some n we call A an eigenvalue.

A number n~ such that S = ~ for n < n~ and S * ~ for

n > n* is called the minimum oscillation number. It will be

proven in Theorem 2.3 that n~ always exists.

Define the ray through a poin t 0 * A ° € as the set

~~(A °) = {tA 0: t > 0). We will investigate the problem (l.1.N),

(1.2) in part by looking along rays; this amounts to writing

IRN (the unit sphere) x [0 ,oo).

As a note on terminology, whenever a function is called

analytic we mean real-analytic .

Given the functions a1,... ,aN, notate X•a (x) = A 1a1(x) +

+ A NaN (x) and define a cone K = (A  € ]RN : A .a < 0 on [0,1]).

It will be shown in Section 3 that the eigensurfaces are closely

related to this cone : Let S~ be any non-emp ty eigensurface ;

then S~ is bounded if and only if K = (0). Let us suppose now

that K * (0), so that S is unbounded. Let t Xm € S with

1A m t = 1 and tm 
+ ~~ Since the unit sphere is compact, there

is a A ° and a convergen t subsequence A m ’ A °. Such a A °

will be called an asymp tote, and we will say that S~ has

asymptotics A m ’ 
~
. A °. In Theorems 3.2, 3.3 it will be shown

that 0 * A ° is an asymptote if and only if A ° € ~ 
de~.fn 3K.

For the two-parameter problem (N = 2) it will be shown in

Theorem 3.4 that the eigencurves are asymptotically parallel to

3, whenever K * (0).

In Section 4, we will consider the system

L~~. - ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ ~~~~~~~~ —~~~~~~~~~~~~~~~~~~~~~ - . .  -: -
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(P
~yi(x~

))’ + (A 1q~ 1(x~) 
+ . . .  + A Na.N (x.) 

+ q~ (x~ fly~ = 0

cos c~. .~ y.(O) - sin a .~ p (0)y !(O) = 0

cos - sin .p.(l)y!(l) = 0 ,

i = 1,.. .,N , of regular Sturm-Liouville problems. For each of the

problems there will be surfaces S~ . Notate A .a
1~~(x~) =

A
1a.1 (x.) 

+ . . .  + A
Na.N (x.) and define cones K. = ( A € IR N

A . a .~ < 0 on [0 , 1)) , C ’ = (A € ] R N : A .a
~ * 

< 0 on [0 , 1) ) ,  and

= 3K .. In Theorem 4.2 it will be shown that when the surfaces

S~ intersect nicely , for example if there are integers N~ such

-s t1~at fl 1s~ * 4’ whenever n~ > N * , i = l , . . . , N , necessa r i ly

the cones intersect nicely: 
~
11j * • 3J~ ~ ~~~~~~ K

~
) * 4 ’ ,  i =

i = 1,.. .,N . For the two-parameter problem , Theorem 4.5 proves

that ~ S~ * p whenever n1 > 0 , n 2 > 0 , as long as some
1 n2

condi tions on the cones are satisfied: 
~l 

n ext K2 * 4’,

ext K1 fl * ç , and a technical assumption. It turns out that

R ichardson ’s resul t , Theorem 4.6, has as its coroll aries all other

resul ts for the two-parameter problem which have appeared in the

literature. An oscillation result is proven as Theorem 4.8, and

an example is given which shows that the result is new .

In Section 5 the cones are discussed. Theorem 5.1 states

that either C = 4’ or C = m t  K , and this seems to be a new

result. In Theorem 5.2 a linear algebra result is given :

Assuming that fl~~ 1C~ * 4 ’ ,  the condition known as “Left-

Defini teness” of Kallstrom and Sleeman (13] implies the condition

known as “Right-Definiteness”.

— - - -- - —— _
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Section 2: For the Sturm-Liouville problem consisting of an

equation

(2.1) (py ’)’ + gy = 0

along with boundary conditions

( 2 . 2 )  cos u .y ( 0 )  - sin a .p(0)y ’ (O) = 0

(2.3) cos t3~ y ( l )  - sin t3 p(l)y ’(l) = 0

it is advantageous to make the Priifer substitution y(x)

R(x)sin OCx) , p(x)y ’(x) = R(x)cos O (x). Problems (2.l)-(2.3) is

then equiva lent  (see Coddington  and Levinson [2 , pp .  2 0 8 - 2 1 3 ] )

to the problem consisting of the equations

(2.4) R’ (x) = (p(x)~~ - g(x))R(x)sin O (x)cos 0 (x)

(2.5) O’(x) = p ( x ) ~~~cos 2 t3 ( x)  + g(x)smn 2O (x)

along wi th the ini tial condition

(2.6) 0(0) =

and the end cond ition

( 2 . 7 )  0( 1)  ~ (mod fl .

- ~~~~~ , -~~~ *i~~~J. ~~~~~•W~~~~~~c -. - .-’ —.——- — 5— - -—— ‘--—- - - -

~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~ -
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Without loss of generality 0 < 0. < it and 0 < < Ii; it will be

shown below that without loss of generality ~ > 0.

At any x where O (x) 2 0(mod IT ) the corresponding solution

y ( x )  has a zero , and v i c e - v e r s a .  Whenever O (x) 0 (mod it )

necessar i ly O ’ (x) = p(x)~~ > 0 , so the  graph of the  function

0(x) versus x can cross the lines 0 2 0 (mod i t)  only in the upward

direc tion. From this it follows that if OCx 0) > kit fo r  some

integer k > 0 then necessa r i ly  O (x)  > kIT fo r  a l l  x > x0.

In particular , 0(1) > 0, so that wi thout loss of generali ty

~ > 0. We also note  tha t  niT < 0 ( 1)  < (n + l ) IT  if and only if the

corresponding solution has oscil lation number n.

The most basic result in Sturm Comparison Ther’ry compares

the solutions of two ini tial value problem s:

Theor em 2.1 (Codding ton and Levin son [2 , p. 2101): Suppose that

there are two initial value problems of the form (2.5), (2.6),

that is , choices p~~,g~~, cz1 and cor responding  solu tions

• i = 1, 2.  I f  ~ a 1, p 2 < p1, and g2 > g1, then 0 2 (x)  >

for  a l l  x > 0. If f u r t h e r  g 2 > g
1 

except possibly at isolated

p o i n t s , or if U
2 

> a1, then 0
2(x) > 0

1(x) for all x > 0.

From t h i s  resul t we can conclude that the solution of the problem

wh ich correspond s to (p2 , q 2,a2) has an oscilla tion number at least

as great as that of the solution of the prob lem which corresponds

to (p1,q 1, cs
1
).

Under a strong hypothesis it is possible to prove the existence

of eigenvalues for the one-parameter problem which consists of the

equation

L~ ~~~~~~~~~~~~~~~~~~~~ -~~~ -~~-
- -— _.

~~~
=

~~~~~~~~~~~~~
—-- 

- ~~~~~~~~~~~
—

~~~~~~
- 

~~~~~~~~~~~~~ ~~~~~~~~~~ - 
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(1.1.1) (py ’) ’  + (A 1a1+q)y 
= 0

along with boundary conditions (1.2).

Theorem 2.2 (Codding ton and Levinson [2 , p . 2 1 2 ] ) :  Assume t ha t

a 1 > 0 on [0 ,1]. Then , for every integer n > 0, there is a

uni que cigenvalue A ? with the corresponding solution to (1.1.1),

(1.2) having exactly n oscillations . Further , 0(1;A 1) -‘- 0 as

A
1 

-
~

When g ( x )  = g(x ,A ) = X . a ( x )  + q (x), A ~ ~~ we will denote

the cor respond ing  s o l u t i o n  of (2 . 5 ) ,  ( 2 . 6 )  by U ( x )  = 0 ( x ; A ) .

Theorem 2.2 is equivalent to saying that when N = 1, a 1 > 0 ,

there is a unique cigenvalue A? with 
~
(l;A?) = ~~it +

For arbitrary N it is known that U (l;A ) is an analytic

function of A ; see lEale [1, pp. 21-22] . From this we have

Theor em 2.3: The minimum oscillation number always exists.

Proof :  D e f i n e  the  f u n c t i o n  4 1: ]R N 9. (Q co) : A k e( 1; A ) .  Since

~ N is connec ted , ~~~N) is connected and hence either a single

poin t or an interval , possibly infinite to the rig ht . Since we

• assume that at least one of the a. is non-trivial we can show

that ~~lR
N) is an interval which is infinite to the right : Fur

if a1(x0) is pos it ive (exactly the same sort of argumen t will

app ly  if a
1 (x0) < 0) s ay ,  then a1

(x) is p o s i t i v e  on some

small subinterval about x0. Thus , 0(x0;A ) ÷ as A
1 

-s when

- _ _ _  - — -

~~~~~~~~~~~ .0~~~~,~
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A 2,...,A N are held fixed. It follows then that ~-(A ) -~ +~~ as

A
1 

-~ when A 2,.. .,A N ar e held f ix ed ( rec al l  the d i scu ss ion

on page 5) .  One then def i n e s  ii~~ = min {n > 0: n Tt + ~ €

The resul ts in Theor em 2.3 has been p r oven for  the on e -

parameter problem by flisenfeld [3] and Faiernian (6] using more

explicit arguments. Those arguments yield more information about

the eigenvalues for t he  one-parameter problem , for example that

there is a sequence A lt € Sn that is monotonic , i.e.

A lt 
< A n+l f or n > n~ , or A lt < A~~

1 for it > ii~~~.

To close t h i s  section we will discuss the convexity of the

eigensurfaces. A region R is called convex if

tA + (1 -t )~ E R w h e n e v e r  A , i E R and 0 < t < 1. A surface

S which is the boundary of a region R will be called convex if R

is convex . Let us define now regions R~ = (A € fl(N U (l ; A)  <

nil + 

~
} , and note that S~ is the boundary of Rn~ 

The following

example shows t h a t  the ei gensurfaces Sn are not necessarily

conv ex:

Example 2.4: Let q = 0 , ~ = 0 , ~ = 11 , and consider the two-

parameter problem

y” (x )  + A~ a ( x ) y ( x )  = 0 , x € [0 , 1]

y ( 0 )  = y ( 1 )  = 0

where a1 ( x )  = 1 fo r  0 < x < 4- , a1 ( x )  = 0 fo r  -
~~

- < x < 1 and

a2 ( x )  = 0 for  0 < x < 4- , a 2(x) = 1 for ~~
- < x < 1 . For con-

- 

~~~~~~~~~~ . 
:~~~~~

.- 
_~~~~~~~~_~~~~~~~~ ~~~~~~~~~~~~~~
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v e n i en c e  i n  t h e  c a l c u l a t i o n s  t h e  c o e f f i c i e n t s  a .  chosen  a re  not

c o n t i n u o u s .  The r e s u l t  o f  n o n - c o n v e x i t y  w i l l  not  be d i s t u r b e d  by

the  d i s c o n t i n u i t y  of these  a~ because th ese a~ can be

• ap p r o x i m a t e d  a r b i t r a r i ly  we l l  in L 1(0, l )  by c o n t i n u o u s  f u n c t i o n s ,

and the  ang l e  f u n c t i o n  0 depends  c o n t i n u o u s l y  on the  a~ in

• L 1(0 , l ) .

Take A ’ = ~8~~~~U ) A 2  = ( Q , 3~~~2 ) ,  and A 3 
(A

i + A 2 ) / 2  =

= ( 1fl 2 4IT 2) = (a convex combination) . l~c w i l l  show t h a t

A ’ 2 € u t  R , and that A ~ E 
~ 2 = ~R 2 . We calculate the solu-

tion v(x;A~~) = (2fl)~~~sin (2n x), so that A 3 € S~~. 1~e also

calculate the solut iOn

[ w 1 s in(~ x) , 0 <

. 1
y ( x ; - ~ ) =

~~ ‘si n ( w / 2 )  + cos~w/ 2)~~(x - 

~) ,  
~ 

< x < 1

where = 2~~~~~~ iT , from which we conclude tha t y(x; \ 1) U;.

exactly one zero on (0,~ -] a nd does  not  v a n i s h  Oil (~ - , 1] .  So
1 -)

A € m t  R~~. One can conclud e the same f or A . 

-

L- 
- ---- . - — - 
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Section 3: For the N-parameter problem (l.1.N), (1.2) the eigen-

su r f aces  S~ are closely related to the cone K = (A € IR N :

A .a(x) < 0 V x € [0 , 11) .  Reca l l  tha t  A ° , A °l = 1, is an

• asymptote for S
11 

if there exists a sequence tmA m € S~ ,

A m ! = 1, tm ~ ~~ w i t h  A m 
-

~ A °. Let S~ be any non-empty

e i g e n s u r f a c e .  Then ( i )  Sn is bounded if and onl y if K = (0),

and (ii) 0 * A ° is an asymptote for Sn if and only if

A ° € a = aK .

Part (i) will he proven in Theorems 3.1 , 3.3 , and par t (ii)

will be proven in Thcorem~ 3.2 , 3.3.

D e f i n e  [ ( A )  max ;
~~a ( x ) . Note  t h a t  i ( . )  is con tinuous ,

0 -x<l
iii 0 m 0because  A A impli es A •a -

~ A •a uniformly on [0,1] , and

note also that A € K if and only i f  t ( A )  < 0 .

Theorem 3.1: K = C0} impl ies that every non-empty Sn is bounded.

P r o o f :  K = ( 0 )  imp lies ~~A ) > 0 fo r  al l A * 0 , in par t i c u l a r

• for all I A I  = 1. Since  the unit sphere is compact and i (S) is

continuous , there is a > 0 such that ~~A ) 
~ 

for  a l l

A l = 1.

Suppose now that there is an ~ with S_ unbounded . Le t
n

€ S w i t h  t -
~ and jA m l = 1. By taking a subsequence ,

we may assume that A m -
~ A ° for some l A °I = 1. Since A m a ~

A 0.a uniformly on [0,11, ther e is an interva l I 0~ of non-zero

length , and an integer M such that A m .a(x) > t o / 2  fo r  a l l

x E 10 and f o r al l m > M . If x0 € m t  ‘
o 

then 0 (xo ;tmxm)

-.5

hi’.,— 
-j -- - - 

~~~~~~~~~~~~~~~~~~~~~~~  - — -‘ -.—-
-- — ~~~— .%~~~~~~ - •— —. ~~ - - — — — -‘-- .-- 
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as m -
~ ~~. This  i m p l i e s  t h a t  0 ( 1 ; t m A m ) -* as m (recall

tite discussion on page 5). T h i s  gives a contradiction. •

Theorem 3.2: If A ° is an asymp tote then A 0 € a .

Proof: For some n > n~ there is a sequence t A m € S w i t h

A m 1 1 , tm 
+

~~~ 
, and A m + A ° , by the  d e f i n i t i o n  of

a s y m p t o t i c s .  F i r s t  we w i l l  show A ° € K , and then we will show

t h a t  A ° ~ m t  K.

To show t h at  A~’ € K , it w i l l  s u f f i c e  to show tha t  T ( A m ) + 0

as m -* ~~ . Assume to the contrary that there is a 6 > 0 and

subsequence m ’ w i t h t ( A 111 ) > 6. Just as in the proof  of
m ’Theor em 3.1 we can conclude t h a t  0 ( 1 ;  t , A ) -

~ as iii ’

g iving a contradiction.

Next , we w ill show that A ° 
~ m t  K: Let € ~~~ so

that t3 ( l ; i . 10 ) = n*1T + t3. Translate the parameters by and

cons ider the equation (py ’)  ‘ + (A .a + (i~° a+q))y = 0 a l o n g

with boundary conditions (1.2). Let 0(x;A )  be thc corr e-

sponding angle function for this problem , and note that it has

eigenvalucs X rn = tm Am - ~0 = tm (A m 
- t~~ i~°). Define the

sequence ~m = A m - t ’ ’
~i ° , and note that it has the same asymptote

A ° as doe s the sequence A m . In o t h e r  words , a t r a n s l a t i o n

does not  affect the asymptotics.

So let us suppose t h a t  A ° € m t  K.  We no te  tha t  A € m t  K

implie s that A~ a < 0 with inequality somewhere on [0,1], and

t h i s  i m p l i e s  t h a t  0 ( l ; A )  < O (l;0) by comparison theory. (To

see th i s , use  Theorem 2 . 1  ( C o m p a r i s o n s )  on a sma ll subin terval

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ — - —  - - --~~~ 
- - - - - -
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(x0,x 1
) on w h i c h  A~ a(x) < 0 so that e(x1 ;A) < ~3 ( x 1; 0 ) .  Then

use Theorem 2.1 on the subinterval (x1,l] with U ( ;A ) havin g

small er initial data t hen  U(.;0).) Since A ° € m t  K and
m 0 mu -

~ A , eventually U € m t  K , so t h a t  even tua l l y

0 ( 1; t m A ’11 ) = li (l;t~~l
m) < 0 ( 1;() ) = 0 (l;~~

0) = n~~I1 + ~ < nIl +

T h i s  g i ves  a c o n t r a d i c t i o n  w i t h  ~111
A m € 

~~11 •

Th~ or emn 3.3: K * (0) imp lies that every elgensurface is un-

bounded thence has asymptotics ) and that A ° is an asymptote
( 0when ever A = 1 and A € a .

P r o o f :  Let n~ be tile minimum oscillation number. First we

will d i s c u ss S,~ f o r  n > n~~, and then S
11~ will be discussed

in two distinct cases.

R e c a l l  t h a t  ,~~( A )  = {tA : t > 0}. Since  1(A )  < 0 if and

only if A € K , for any fixed A € ext K there exists

n * (A) = In i n ( n  > 0: S 0 ~~(X) * ~} < ~~ . As in the proof of

Theorem 2.3 , A € ext K implies S~ 0 ~~(A) * ~ f or a l l

~ > fl*(A) by using tile distance along tile ray as the only para-

meter.

Le t us assume t h a t  the parametcrs have alread y be en trans-

lated by a U ° € Sn*~ 
as wa s done in the proof of Theorem 3.2 ,

so that 0 (l;O) + ~l. T h i s  t r a n s l a t i o n  in no way affec ts

the existence of asymptotics.

- -.—
~~~~

- .- -- 
_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Choose any A ° € a for wh ic h 1A 0 1 = 1; this is possib le

m 0 . mbecause K * {0}. Choose any sequence A -+ A with A = 1

and A 111 € ext K; tills 15 possible because K must he contained

in a half-plane. We will show that for any fixed n > n* there

is a sequence tm > 0 w i t h  tm A m € S~~, a f t e r  w h i c h  i t w i l l  be

easy to show tha t  n e c e s s a r i l y  tin 
+

~~~ so t h a t  A ° is an

asymp tote.

To show the existence of the t , it suffices to show thatm

fl*(A ifl) < (l+n *) Vm , because the set ( 0 ( l ; t A m) : t 0} is for

each fixed m an interval infinite to the right , as in the proof

of Theorem 2.3. Let 4J (t) = max 0 ( l ; t A m ) ,  w h i c h  is continuous

for t > 0. Since ~(t) -÷ n*1T + = U (l;0) as t ~~~~~ 0+ , there

- • exists t0 
> 0 .~~~ . U (l; t0

A m) < (l+n ~ )Th Vm.

Suppose now that we have fixed an ii > n~ and found the

sequence t > 0 with t A m € S , as was shown to be pos s ib l em n
by the arguments above. If t~1 

-* +
~~~ fails to hold then there

is a bounded subsequence {t 1~1 } which can be assumed to be

convergent. Say that t m I ~ * t > 0. Then

O (l;t , A m ) -
~ U (1;~ A 0) < 0(l;0) = n*l1 +

by compar ison theory  and A ° € K. This g ives a contradiction

*with ~ A € S , n > itm n

To show that the conclusions hold for n = as well as

for we will consider two d i stinc t cases : (i) t h e r e  e x i s t s

A such that U (l ;~~) < n*ll + 
~~~ , or (ii) there does not  exist such a A .

In case (i) we mer ely transla te the parame ters by A instead of

• - - .-——. -

~~~ -
~~

- - ~~~~~~~~~~~~~~~ --~~~~-- -~~~~~~~ — — - --- — -- 
.
- - — — -  - ----- — -- - - - ---  - -~~~~~~~~~~~~~~~ -
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. t i , d  H I I  • H . ih ti~~ ~~ ri. , i tli on l  v in inor mod if i c a t  ion.

I n  c a s e  ~. t 1 )  nece~~~ .iu i U t h e r e  does not exist a A w i t h  A S ’, 0

~~i t h  strict inequalit y somewhere on [0,1] , for if there did exist

sU Ch a A t hen  0 ( 1  ;~~) < 0 (1; 0) = 11 * 11 + 
~~

- h~ c o m p a r i s o n  th eo r .

Because A € m t  K implies A~ a < () w i t h  s t r i c t  i n e q u a l i t y  some-

w h e r e  on [ 0,1], m t  K = ~ and K = D = ( A :  A~~a 1) on [0,1]).

B u t  t h e n  (,~~~~÷ \ ) € S~~ f o r  a l l  \ € ~ F i i t i s  t l ie ’ c o n c  h i s  i o n s  a iso

h o l d  i n  t l i  i s  c a s e .

I -or  the t w e)  — pa ra i f l e t  er  p r o b l e m  we have ci g e n c u r v c s  , and w e’

can say  m o r e ’ a b o u t  t he ’  a sv mp t  ot ic s s i n c e’ the pos s i b  i lit i es for

unbound ed ~equcmices of e i g e n v a l u c s  a r e , as  one m i g h t  exp ect , m o r e

lint it eel t h a n  f o r  N 3.

~ 1 1 s.i V t h a t  an  u n b o u n d e d  set ~ c ~ 
2 s a s v m n p t_ot  i c

, t 0 - - - -
j~~r allc1 ~~~o a r i v  ~~~ ) ,  -

~ I = 1 , ii for a ll ~ > 0 ther e ’ is an

R > 0 s u c h  t h a t  t \ € ~2 0 ( -~~ 
R }  . I \ = I , t 0 imp l i e’s that

0 Suppose now t l i a  t we ha ye’ a convex COfle C ~ . I t

is not J u t  i cult to see that ( . i s  h ou f l d e d  by  a t  mos t  t w o  r ay s ,

so t h a t  C = •f~ U ‘~~~‘‘‘ , w it h pos s il i l V ~~
‘ ‘ = . We 1% ii 1

s ;tv  t h a t  a set S c 1k is ~ i e ’~t ljy _~ a r : i 1 l e 1  t o  ~‘(

t h e r e  a r e  ( n o n — c n i p t v )  u n b o u n d e d  sets S ’ , S’ s u c h  t h a t  S i s  t h e  dis-

j o i n t  u n i o n  of 5’ a nd 5’’ and ~ucIt t h a t  5’ is asymptotically

p a r ; t l l e ’l to 4’’ a nd 5’’ i s  a s y m p t o t u c . i l l v  p a r a l l e l  t O  ,‘~~~~~‘‘ .

i n  ele I i n  i ii~~. ‘‘ . 5 a svmn p t ot I ca l i v  pa ra li el to a ra . . . ‘‘ we

do n o t  r e’qu t re t h a t  c~ is an arc ; i n  fact , w i t h  in  the poss i hi lit ~ es

a l l  owed by t he de f i n  t t ion w e ’ m a c  h a v e  i t t t ~ * or ~i (the

di s j o i n t  uni on of two arcs)

.~

- - .
—

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --- - — - -  ~~~~~~~~~~~~~ - -
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In the A -p lane every non- trivial vector A = (X 1, A
2) has

the repre sentat ion A
1 

= r~ cos 1, A
2 

= r~ sin 1, wi th r > 0 and

0 < 6 < 2 1 1 . W it h thes e res tric tions the r,y are uniquely de-

f ined , so we have a well-defined map Y: 1R2 -
~ [0 , 2 11): A 

~
÷ y (A ).

Theorem 3.-I: For the two-parameter problem assume that K * (0).

Then every n o n - e m p t y  c i g e n c u r v e  S~ i s asym ptot ica l l y  par a l l e l

to a 3K.

Proof: Let 3 = U - -& , and let A ± be such tha t .~~
t 

=

= (tA ’ : t 0), IA ~~I = 1. It is po ssible that =
+ + - +Let ~ = d~ 

) € [0,2r1 ). Without loss of generality y < y

Let n~ denote ’  tile minimum oscillation number , as usual. Let

€ S~~ , so that i (l ;u °) = (*~~~ )

There are onl y two  possibi lities for the cone K , because it

is convex: case (i) K = (tA : t > 0, y < ~- (A ) < y~~}, or

case (ii) K = [tA : t € IR, ~~X) = = a = { t A :  t > 0 , y (A) =

‘y (moel 211)). Case ( ii ) can oc cur o n l y  when a1, a2 are l inearly

dependent. If a 1 is non-trivial , then case (ii) can occur only

when a 1 is of both signs.

Case (ii) is simp le and w i ll be dis cussed first : Since a1
i s  of both s i gns , there arc ei genv alues Ufl~ “ ? ~~ for the

one-parameter prOt)lCm which Consists of the equation

(pv ’)’ + (ua 1 
+ (U

0 a+q) y = 0 along with the boundary conditions

(1.2). In  f a c t , f r o m  Theorem 2.3 (Minimum Oscillation Number)

and t h e  arguments contained in the proof of that theorem

- - — —~~~~~ - - -— --~~~~~ - - 
~~

—
~
-‘

~~~
-—--—- - r ~~

—_ - — ~~~~~~~~~~__, 
- - -_ -__- ~~~~~~~~~~~ ~~~~~~~~ _~~~~~ _~~~~ - - - — - -  — - —  
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(see also Faierman [ 6 ]) we can conclude that for n > n* there

exist pos it ive integers j~~(n) and eigenvalues 1t n ,k ~

k = 1,.. .,j~~(n) and < 0, k = 1,.. .,j (n) for this one-

parame ter problem . For the two- parameter problem , let a1 be

non- triv ia l and let a7 = ,~a for some ~ € ]R. Then the two-

parameter problem which consists of the equation (py ’)’ +

(A 1a1
+A ,a,+q)y = 0 along with boundary conditions (1.2) has

“eigencurv es”

Sn 
= (U~~~~~{U ° + (A 1,A 2): A 1 

+ ~ - A 2 = U fl,k})

U (U~~~
’
~~{~ ° 

+ (A 1,A 2): A
1 

+ ~.A
2 

=

f or n > n~ , i.e. a finite union of straight lines. Also ,

U ° + 3 = (~~0 + ~: ~ € 3} c S~~~. In fact , all of these straigh t

lines are parallel to 3 = (a straig ht line) , and the straight

line + 3 divides S~ into two groups of straight lines for

n > n~ . Of course, this is an unusua l case If we define region s

R {tA : t > 0, y - (11/2) < y (A) < y + ( 11/ 2 ) ,  (mod 2 11)) ,

R÷ = lR~~.R , and denote S~ = S~ 0 R± , then we have a decomposi tion

S = S~ U S , as des ired in the conclus ions of this theorem .

Let us consider case (i) now. From the discussion within

the proof of Theorem 3.3 we can conclude that there is a A with

* • * m ,±0(l;A ) < (n Tr÷~~) .  Fix now any n > n . Let A be chosen

such that A m ,± , = 1 and Y (A m
~ _ )  = ‘Y~~ (l ±

~~~~
). (Here we

assume that ‘y > 0, which can be accomplished , if necessary when

= 0, by a sma ll rotation of JR2 while leaving < 211.) Note

-

-,.-- -.~~~~- :~~~~_.-- ~~~~~~~~~~~ - — -  - :  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—------ -



tha t A m~
± € ext K. By tile arguments in the proof of Theorem 3.3 ,

there exist t 
+ 

> 0 such that Um
,_ defn (A + ~ ~A

m
~
±
) € ~

m > 1 . and necessaril y tm c  
+ us m 

~ m~~ 
or - .

• Define now R = (A + tA: t > 0, 0 < y (A ) <

= (A + tX : t > 0, < y (A) < 211) , and deno te S~ = Sn 0 R~ .

Because U (l; A + A )  < U (l;~~) < ( * I l+~~~) whenev er ‘r < y (A ) <

we have Sn 0 {tA : t > 0, 1 < y (A) < = ~~‘ . So S~ = S~ U S~ ,

and S~ is unbounded fo r  c = + or - . i f we can show that S

is a s y m p t o t i c a l l y  p a r a l l e l  to ~~
‘
, then the same arguments will

show that S~ is asymptotically parallel to :/ , and the proof

w i l l  be c o m p l e t e .

Suppose to the contrary that S is not asymptotically

parallel to - ( .  Then there is a sequence (A+ ~~ A m) € S w i t h

A m j = l~ tm 
> 0~ t~ 

-
~ 

+
~~~~~, and (A m +~~~ A ) *A . T h i s  i m p l i e s

that A m -I. A . Since the unit sphere is compact , there is a

convergent subsequence , say A m A °. By Theorem 3.2 , either

A ° = A~ or A ° = A . By the definition of S , y (A m
) <

- 

. 
Because of this y (A °) € [o ,i ]. This  shows t h a t  y ( A 0 ) =

s ince I A ° I = 1, n e c e s s a r i l y  A ° = A . Th i s  g ives a con trad ic tion ,

and c o m p l e t e s  the  p roo f  of the  theorem . U

O t h e r  work  on a s y m p t o t i c s  can be found  in F a i e r m a n  [ 7 - 9 ] .  

— -— - -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  T~~~- 
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Section 4: Let us define for a given problem (l.1.N), (1.2) the

min imum distance P~ = min~~~ A l  fo r  n > n*. It is not
n

difficul t to show that the minimum distance is always achieved ,

i.e . there exists A 11 € S~ with = 1A
11

1 , by usin g the repre-

sen ta t ion tA , A l = 1, for all elemen ts of S~~. We have also

Lemma 4.1: 
~n 

-

~ 
~ as n -

~

Proof: If not, ther e is a subse quence n ’ -
~~ and eigenvalues

L A 11 € S~~, w i t h  1A n j = ‘~n ’ bounded . Since there are con-

stants k < 

~
, p0 > 0 such that k > A ’t .a(x) + q(x)~ for all

n ’ and for all x in ( 0 , 1.] and p0 
< p(x) for all x in [0,1],

we have 0 (l;A ’t ) < (k/p~)~~
’2 

+ ~ f or a l l  n ’ , by Theorem 2.1

(Comparisons). Th is g ives a con trad ict ion wi th n ’ 
~~~

. U

Suppose now that we are given a system of regular Sturm-

Liouville problems of the form (l.l.N), (1.2), i .e. for

i = l ,...,N

I (p~ y~ (x 1))’ 
+ (A 1a~ 1 (x~ ) + . . .  + A

Na.N (x.) 
+ q~ (x.))y. = 0

(4.1) cos ~~~y1(0) 
- sin ~1 .p~~(O)y!(O) = 0

- sin 8~~’p ~~( l ) y ~~( l )  = 0.

So that each of these prob lem s i s regular we assume that , for

i = 1 ,...,N , ~~~~~~~~~~~~~~~~~ are continuous and real-valued

and that p 1 is positive and continuousl y differentiable. Recall

the notation A .a.* (x .) = k
1a.1 (x.) 

+ . . .  + A \a.N (x.). W ithout

loss of generality

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
- _____________________________________
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we assume that ~ u • < ~ and 0 < < 11 • Corresponding to

the ~
th problem in the system is an angle function Ojx .;X),

eigensurfaces S~ , min imum oscill ation number n~ , minimum

dis tances p’, and cones K~ = (A € JRN : A .a
~ * 

< 0 on [0 ,1]),

= 3K~ , and C~ = (A €l p~~: 
X .a.* < 0 on [0 ,1]).

In this section , we will discuss osc illa tion theorems for

the system (4.1), specifically the exis tence of eigenvalues

A = A ° at which simultaneousl y each of tile p rob lems  in the

system has a non-trivial solution. Often we seek an eigenvalue

for w h i c h  the 1t1t problem has a non- trivial solution with a

specif ied osci llat ion number i = 1,.. .,N. The f i r s t  r e s u l t

doe s no t appear  in any of the  modern li teratu r e :

Theor em 4.2 ( R i c h a r d s o n ’ s Necessary Cond iti ons): Suppose that

for each i. = 1,... ,N there exists a sequence of integers

~~i ,m~rn= l wi th n i m  as m -~ and such that

fl~~~~~~
1
s~~~ * p fo r  a l l  poss ib le choice s of n

~ 
€

i = 1 ,...,N. Then n ec e s s a r i l y  for i =

(4.2) n ~~~~~ int-
~
K
~
) *

Proof: For convenience take i = 1. Choose for each m an

e igenv a lue

tmA m € 
~~l m  

n (
~~ J>2~~~~ 1

) wi th lA
m j = 1, tm ~ 0.

We can a ssume , by takin g an appro pr ia te sub sequence , that

- .~
_ T
~::~~~L~~~_._ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~

— -~~~~~
- -



___________ - ~~~~~~~~~~~~~~~~ 
—. — — —. — --— —

19

m 0 0 . 1A -~ A for some I A  I = 1. Since t > p -~ ~ as m -~ c~m 111 ,m

(because of ‘t l m  as m -‘~ and Lemma 4.1), nec e s s a r i l y

A ° € fl~ >2 a~~~ , by Theorem 3.2 . If A ° € m t  K1 then there is

an M > 0 with A m € m t  K1 for all m > M . Then U (1;t A m) <

ti (l;0) for all m > M , giving a contradiction with n l m  
-+ 

~~~
. U

We note in particular that if t h e r e  a rc  i n t e g e r s  such

tilat fl~~~~~1
s

,~ * P whenever n~ > N~~, i = 1 ,.. .,N , t h e n  the

conclusion (4.2) still holds. The reader may wonder if in (4.2)

the set dll~~—.int K 1) can be replaced by ext K 1 
= 

~~~~~~~ . The

answer is no , because of the following examp le: Let

a11 (x 1) a12 (x1) 
- 

sin(11x1) cos(11x1)

a21 (x2) a,2(x2) 
- 

0 1

so that K1 
= .~~((-l ,0)) = (a single ray), K 2 = ((A 1,A 2) :  A , < 0).

We have K1 c K, so that a
1 

n ext K2 
= 4 . But for the system

y~ (x1) 
+ (A 1sin 

l1x
1 

+ A 2cos 
11x

1) y 1 
= 0

= y1(l) = 0

y’~(x1) + A
2y2 

= 0

= y2(i) = 0

there ex i sts A n ,m € S,~ 0 S~ for all n > 0, m > 0: Choose

Ii__ —. ~~~~~~~~~~ - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
_

—~--— — ~~~~~~~~~~~~~~~~~~~~~~~ - .4
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A n ,m 
= (A ~~

m ,A~~
tn) wi th X n ,m 

= (m 11) 2 , and f ind  A n ,m fo r  the

pr oblem 
~~ 1 

+ (A~~
m S~ fl lTx

1 
+ (mlT )

2cos 11x
1
)y

1 
= 0, y1(0) = y1(l) 

= 0.

It is possible to find the A~~,
m by proving a stronger version of

Theorem 2.2 with the hypothesis “r > 0 except possibly at

isolated points” re p lac ing “r > 0” . It is not too difficult to

prove this stronger version of Theorem 2.2.

At present there are several results known which state

sufficien t cond iti ons for the exis tence of eigenvalu es for the

system (4.1) of Sturm-Liouvi lle problems. We will present these

resul ts , prove Richard son ’s theorem on sufficient cond it ions for

the two-parameter problem , show how the other two-parameter re-

suit s can be deduced as corol lar ies of Richardson ’s theorem , and

present a new N-parameter result which is not covered by results

pr ev iou sly found in the literature ,

Define IA I (x 1,.. . ,xN) = det (a.~~(x.))~~~1 and the m i n o r  sub-
j =1

determinants

a~~. = ~~ (x1, . . . ,xi l , x i+l ,xN) 
= (-l)~~~ det(ars (xr))r*j

s*j

known as the “cofac tors”. Define Rig ht-Defin iteness as the

condition that IA I (~) be sign-definite (either always positive

or always nega tive). Define Lef t -Defini teness as the two condi tions

( 1 . 3) q 1 < 0, ct~ < 11/2 < $~~, for i. = 1 ,... ,N
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(4.4) There exists p~~~ €fl
N such t1~ t ~~~~~ > 0 for i =

Theorem -1 .3 (Faierman [5 , Chapter 2], Ince [12 , P p .  248-251 ]): If

Ri ght-Defini teness holds t h e n  for all choices of n~ > 0 t h e r e  is
. ,~ N .ia u n i q u e  A € t

iheorem 4.4 (K~i1ls tr~ m and Slecman [13J , Slceman [19 ,20]): If Left-

De l initeness ilolds then t h e r e  cxi st i ii f i n i te lv - ni anv N - t u p lcs

(Il l Ifl ,... ,nN m ) of non-nega tive integers such that fl~~ 1S~ 1
~~ * ~~~.

Theorem 4 . 5  (Gregu~~, N e u m a n , and Ars cott [10 , p .  -1 34], Sleem an  [16 ,17)):

Fnr thc two-parameter problem assume that C
1 0 C~ * 

) ,

C1 0 ext K , * ~, and ex t K
1 

n C-, + ~~~. Then S’ n S * ~ for
112

all 11
1 

0, n , > 0.

Theorem -I . :~ For t he  two-parameter problem assume that there

exists ~ such that ~~~ ~~~ < 0 w i t h  strict inequality some-

where on [0 ,1] , j = 1 ,2 , and 0 ext K , * ~, ext K1 0 ~2 
* ~~~

Then there are integers N~ such that S1 n S2 * ~ w h e n e v e rJ n i n~,
* *> N1, it , > N ,.

Theorem 4.6 was stated in Richardson [1-1 , pp. 32-34], and a

geometric proof w a s  given there; however , Ricilardson assumed that

the coefficients a. . ai’ e anal ytic and specified the Dirichlet

boundar y conditions y 1( l)  = 0 (
~~ 

= 0, 
~~~ 

= 1 1 ) .  The se

restrictions do affect tile generality of the discussion in

Richardson [14].

Before proceeding w ith the proof of this result we need

- ~ •+~• • 
I -
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Lemma 4.7: If there exists such that 1l~~ a1~ 
< 0 with

strict inequality somewhere on [0,1] the S~ is an a n a l y t i c

curve for  it > n~ .

Proof (of the Lemma) : After a rotation which sends into the

positive A
1-axis we have a11 

< 0 with inequality somewhere on

[0,1]. To prove the result it will suffice to show that there

exist functions 
~ 

and sets Q ~~1R such that S~ =

{( ~p ( A , ) , A ,) :  A~ € f o r  a l l  it >

Let ~ = (A ~~: the r e i s a A 1 with (X 1,A~ ) € S~ }. Since

U (l;A 1,A ,) is stric tl y d e c r e a s i n g  in A
1 

f o r  each fixed A ,

(by comparison theory; see t i le  a r g u m e n t s  on page  5 ) ,  f o r  every

~ there exists a uni que A~ such that A ° = (A~~,A~~) E S~~.

Define ~~ (A ,) = A 1 in this way . Fix an it > ii and consider

the equation U (i; A) - (n fl+~ ) = 0. By the Implicit Function

Theorem , to 5110w that c~~~~( . )  is analytic it will suffice to show

that 3U (1;A 0)/ 3A
1 

< 0 whenever A ° € S’. I t is not difficult

to calculate that

0 ~l r l 03t3 (l A )/3A
1 

= ~(1) J 
P 1 (x) a11 (x)sin’U (x;A ) dx

0

1 0 0where P(x) = exp (_ J [-p(s) + A a 1~~(s )  + q (s)]sin 2u(s; A ) d s )
0

is a positive-valued integrating factor. Hence , 3U (l; A 0)/aA
1 

< 0.

I f  aJ (l;A 0)/3A
1 

= 0 then necessari ly U (x;A °) 0(mod 11) for

all x where a11 (x )  < 0 . Sinc e a 11 (x)  < 0 f or x in som e

subinterval of [0,1] there is a contradiction with the fact that

— — 

L - — _ _ _ _
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Ii (x 0) 0 (mod 11) i m p l i e s  U ’ (x 0) > 0. •
Somewhat weaker versions of this lemma have appeared in

• Sleeman [16], Paierman [ 5] , and Richardson [11 ,15].

Proof (of Theorem 1.6): Since there is a such that

u
1
~ a < 0 with strict inequality somewhere on [0,1] , necessarily

K1 * (0). By Theorems  3 . 3 , 3.4 we can conclude that for n > n~

t he  cu rve  S~ is unbounded and asymptotically parallel to the ray

or pair of rays which forms 3
~~
, where n~ is the minimum

oscillation number for the first problem . Similarly, the S~

have the same propertles with respect to 
~~2 for all it > n~ .

Recall now from the proof of Theorem 3 . 4  (see page 14 ) the

definition of ‘i (~~~) in t e r m s  of polar coordinates , i.e.,

A = (r cos Y , r sin Y) ~-‘ y € [0 ,211).

Let 3~ = u = (the union of at most two rays)

= ~ (A~~) with ) A ~~J = 1, and y~ i (A~ ). For convenience

assume that y c y.4 , j = 1, 2 .  We can assume that ‘y <
j  j 1

without loss of generality.

We note that if = t he n e i t h e r K 1 c K , or K 2 c K 1,

contradicting the hypotheses 
~ 

0 ext K, * ~ and

ext K 1 fl ~~~ , * ;- . So , without loss of generality, ‘r~~ < 
~~~~~. A l s o ,

< becaus e if otherwise then K 2 c K 1 .

Let us define now y
~ and ~T yT + 2~~, j  = 1, 2 .

1he hy ;ot i le s eS  imp l y ‘
~~~~ 

< < 211 . Let 

—-‘ —— - ,  -- ,.—--—- S
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= max {~~ - y~~, ~ 
- 4, ~ 

-

The cone K 1 can take either of two f o r m s :

K 1 = {tA : t > 0, y < ~ ( A )  <

or

K 1 { t A :  t > 0, ‘((A) =

The latter can oilly occur when  a1 ,a2 are  l i n e a r l y  d e p e n d e n t  and

K 1 
= 

~l 
(A: A .a

1~ 
= 0 on [0,1]). The hypothesis there

exists such that P 1~ a 1~ 
< 0 with strict inequality somewhere

on [0,1]” precludes tile latter p o ssibilit y . A similar s t a t e m e n t

holds for K ,.

Let now = inax{n > 0: S~ 0 K. * ~) for j = 1, 2 .  Be-

cause U .(l;~~) is bounded on K - by ~~ (l;O)~ we can conc lude

that < 
~~~. 

-

Let us fix any n
~ 

> and 112 > N~~. For any set G c JR2

define ~(G) = ti (g): g € G}. By the definitions of the N we

have that ~(S
3 ) 0 [yT ,y~ ] = ~, so that y(S~~) C [0,y ) U (y~ ,2_n)

for j = 1 ,2. ftc inclusion is , in fact , equality because S~

is a continuous curve , by Lemm a 4 .7 proven above , and asymp tot i ca l ly

p a r a l l e l  to the ray (s) o f by Theorem 3. 4 .

Let us define itow two “wrapp ed-aroun d- [0 ,2 T’)” forms~~ ‘ ( ( . )

appropriate to S~ ,S~ , respectively. We let
1 2 

— - — -  - --- . — -  — - -

- -

~ 

- - ~~~~~~~~~~~~~ -

-
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1’( (x ) A € Sj~ and y (-~) € (4 , 2 _ n )

y. (X ) = .~~~ 
-

+ ‘
~ ( A ) ,  A € ~~ and ‘ ( ( A )  € [0~~Y~ )

W it il this definition we have Y~ (S~~~ = 
(%~~~~~~~~) 

c [0 , 4 11 ) .

Recall the choice of Ti. Because is asymptotically

a ~ara1lel to a . ,  j  = 1 ,2 , there is an R > 0 sufficiently large

t I l~1t

A l  > R , A € S~ imp lies i~ ( A )  € (~~~,y~~+n ) U

and also there exists 4 such that 4 € S~~ , 
14 1  

= R , and

+ - -+  - +  - ~~~- ~~~- 3

~~~~

. (ii .)  € ( ‘i
,~ , ‘~. + n )  , 

~~ 
(u ~~ E (~~ -n ~~~) . he have , by the

definition of n , the  inequalities

(-1.5) 4 < ~(4) < ‘(,O1~ ) 
< + Ti - 

~~ 
< 

~~~~~ 
<

Define now two curves ~~~~
. = { (

~ 
( A ) ,  I A I ) :  A € ~~ } in

3 3 j
[0,-In ) (0,-’). These curves are analytic because S~ ,S~

a r c  anal y tic. This last fact was proven in Lemma 4.7 using the

i l v p o t h e s i s  “there exists ~-~
)  such that . . .“. We note that

( i) ( y ~ (4) ,R) € , c = ± , j  = 1 ,2, and ( i i )  ~~ < R wh enever

X € S~~ and ~~ ( \ )  € (~~~ +n ,~~~~- n ) . From these two fac ts we w i l l
J . 3 J

conclude that there is a point (~ *,r*) € ~ which  impl ies
• * * * . * 1 2there is the point (r cos ‘r , r sin ‘y ) € S n S , as des i red .n1 n, 

- ___ ~~~~~~~~~~~~~



he focus our a t t e l l t l o r l  on t h e  i n t e r va l  1 * = [~~~+n J ~~ n ) ,

and define A . = V . fl (A: ( A )  € 1* 1 C { A :  A~ < R} , by (ii).

One m a y  refer to i~ igure 1 found on page 3~ . If we assume that

0 ~~~~, 
-
~~~~, then e i t h e r ( a )  A 1 lies above A 2, or ( b )  A , lies

~ihov e . Here by “A 1 lies above A ,” ~e m ean  that A~ € A.

and 
~ 

1 ) = , (A )  imp i 1C5 A 1 A . In case (a) , coo t inuing

alo ng the curve V 1 above 
~~~, 

we conc lude that there is a

€ s u c h  tha t ‘~~(~ ) 
= 

~~~~~ and H > R , giving a

c o n t  r a d i c t  ion  w i t i l  (ii) . I n c a s e (b )  , c o n t i n u i n g  a l o n g  t i le  c u r v e

~~~ , abo v e we c o n c l u d e  t h e r e  i s  a ~i € 
~~~
, such t h a t  ~~~ , (p )  =

I I ~~~ ‘ ~ ~~~‘j ’ t~~ “ contradiction w i t h  ( i i )

This concludes the proof of the theorem . ~

We note that tile statement “ a
1 
0 ext K , * ~ - and ext 0

a , + ~~~
“ is uju ival ent to “K 1 ~ K , and K , ~ K 1” .

It w i l l  now be shown that for the two - parameter probl em

Theorem -I . ~ 15 tile strongest result in t h e literature. Aside

f r o m  t i l i s  we note that , UPOfl assuming there exist ~i-~ s u c h  that

a 
* 

< ) w it ii st r i Ct  ne qua  l i t  V SOlllet~hlel’e on [ 0, 1] , j = 1 , 2

T h e o r e m  - l.c is “close to sharp ” by recalling Theorem 4.2

L 

(Necessary Conditions) and tile examp le wh ich f o l l o w s  it on

page 1 ~

it w i l l  be shown in Section 5, that C * ~
p implies

tn t K = C , and we will use t h i s  f a c t  in the discussion below.

We note also that C * ~ imp lies tile minimum oscillation

num be r n~ = 0.

_ _ _ _  —

-
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F r St of a 11 we comp a r e F h e o re m 4 . ( with Theorem -I . 3

( R i g h t  - l)eiin i teness). It i s  k n o w n  t h a t  Al si gn-definit e

imp lies that C 1 0 C-, * ; and fl C~ * ~ , from Sleeman [15 ,

pp. 2 0 1 - 2 0 3 ] .  l’o b egin with , K 1 ~ K ,, because if K 1 C K~ we

t%o ulLl have ; s 0 C 1 
C C 1 

= m t  K 1 
C K , C e x t  C., and

• 
n C . Ihe saute a rgumc nt shows that K , ~ K 1 Thco rem

-I . o shows that t lie re cx i st > 0 such that 51 fl S ; ;
— n~

w i l e n e v e r il
l 4~~ 

. Front i heoreni .2 ther e exists a

€ 0 C~ suf f ic i enti large that (1; 0) 
~ 

for the

t rans 1 a ted pr obl ems

= P~~
’c0s i~ + (,~~a + (I U ..L+q ))5i ll

_
u ‘ =

= 1 , 2. ith this we have 
4 

= \~, (1 . I b i s  g iv e s the conclusio n

of I lieu rein I . 3 except t ha t no uni queness i s shown

Second of  a l l  ~e compa ie I leo rem -1 . i wi ti t Theorem 4. 4

( L e f t — D e f i n i t e n e s s ) .  For ‘-
~ = 2 tIle assumpt i on  (4.- I )  r e d u c e s

to: there is a € ur such th at (1 - ~~a~~1 
+ ,~,j 1, = ~~a , ,

() * ~) * (1 () 0 0and  0 .- + = u 1a 1, 
+ 

~2” 1 
= - (~~1 a 1 , -

l b  i s i ~~~j) 1 1 es that (- , 
~

• 

~
) ~ C 1 0 . . \ s we sa~ above , t i i i  s

m u ) !  i es that (liv Theorem 4. 
~

) there exist N~ such that

S1 0 S * P when ever n 1 > N~~, ii , > N~~. Reca lling the
11 1 11 , L

definition of the 4’s and usin g the other L e f t - D e f i n i t e n e s s  hy-

pothesis (1 .3) we conclude that 
4 

= N~ = 0.

Th ird of all we compare Theorem 4.( w i t h  Theorem 4.5

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

- 

-- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 

-

~~~~~ ~~~~ -~~~~~~~~~~~
_ - - - - --~~~~~~~~~~~~~~~~~~
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(;regu~ et a!.). Ihe assumption that P * C 1 0 ext K, =

m t  K
1 
0 ext K , i m p l i e s  that K 1 ~ K ,, and ~ * ext K1 0 C2

implies K , ~ K 1. This shows tim e existence of the N f rom

Theorem 4.b ; as before , a translation by a A 0 € C~ 0 C~ sh ows

that 
4 

= N~ = 0.

Richardson ’ s second articl e [1S] possi bl v extends his result

to the three -param eter problem , and the claim is made there that

the method of proof extends to t h e N - p a r a m e t e r  p r o b l e m  , :t s u . e l l .

I t i s ~i if f i c u l t , l mowi-vi- r , to dec i d e  i f t h e  m e t h o d  i s car rect for

N - - 3 b e c a u s e  l~ot Ii of  R m c  I-ia rd san ‘ s art c 1 es [1 -1 , 1 7 j  Cant a in in —

m c c u r ac  i es . he s imp lest ni i Stake i s t hue as sumn pt i en of convex I t y

both imp l i c i t l y i n t i l e p i c t u r e s  i n [i i ] and e x p l i c i t l y  in the

a r g u m e n t s  in  115 ]. Al so , til e techni que of cutting the ei gen-

surfaces wi t h  p lanes , t a r  t u e  t h r e e - p a r a m e t e r  p r o b l e m , seems

cumbersome , if n o t  impossi b le , to use in t i l e  general N-parameter

problem. In sp i r e or this , we must a dmit that it is possi b le that

useful work in R ic Lm rd son [13] which remains to be discussed .

ihe result of Gregu~ et al. can be generalized into an

N-paramet er result , Theorem 4.8. This result ilas a Corollary 4.9

for the three-para m eter problem , and an examl)lc is given to show

t h a t  t h e  c o r o l l a r y  is not vacuous.

I h e o r e r n l . 8 :  For  N > 3 l e t  t h e r e  be i n t e g e r s  1 < k, ~ < N

such t h a t

(4.6) (a) ak i  > 0~ a~~ 1 > 0 on (0 ,1] .

_______ - - — - — —.----,-.- - —- - - -.~~~~~~~~~~~~~~~~~~ — -—- - —
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(b) de t (a
lJ

(x l
) )
~~~k~~ 

is s i g n - d e f i n i te
j*l ,N

(4 .7) dc t (a
~ J

(x
~

) )
~~$k 

, ~~~~~~~~~~~~~~ are sign-definite

j*N j*N

(4 . 8) C k 
1) ext * c

~ 
and ex t Kk (1 C~ * p .

Then fl~~~~1s~~ * ~ fo r  all n 1 > 0,.. 
~‘~~N 

> 0~

Proof: Fix any choice of n1 > 0,.. 
~‘~ N 

> 0, and def ine

= 

~ Jsk~~~ ’ ~~~ = ~~~~~~~~~~~~~ Note that Sk 0 S~ 
= fl~~~1~~3~~

U s i n g hypo the sis (4 .7) and The orem 4 .3 (Ri ght -D ef i n itenes s ) ,  for

a ll A N € JR there ar e uni que ‘ P .  k (A N ) ,  ‘ P .  P)AN
) ,  j  = 1 ,..

such t h a t  ‘P~~
(A N) 

defn 
(‘P l k (A N),...,~ N l ,k (A N),A N) € Sk and

‘P~~
(A

N) 
defn (Q

l~~~
(A
N),. . .,‘P N 1 ~~~

(A
N),

A
N) ~ S~~. We show that these

functions are analytic: Let t3~~(x~~;A ) be the angle function for

the ~th problem. We want to solve the (N-i) equations

(Y l (A),...,~~k l ( A ) , 
~k+l

( A ) , . . . ,
~ N ( A ) )  = 0 € JRN-l where

4).(A) = 0 .(l; A )  - ( n . lt+~~ . ) .  We know tha t 
~k

(A N ) is a solu t ion f or

all A N € JR
N so it only remains to show that these solutions form

an analy tic curve parametrized by A
N~ 

Th is wi l l fo l low from

the Impl i c i t Func t ion The orem , since the Jacobian is

• 
det(a

~~
.(A )/aA

J
)
~~ k 

= de t (
~~~

(1)
~~ J

M i (xi )a i J (x
~

) s in 2e
~~
(x.;A)dx.).

~~k
j*N j*N

1 1

= J . . .  
J
det(a.. (x.)).$k

. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I*N i*k

* 0 by hypo thes is (4 .7 ) ,  

- -~~~~~~-— --—.

__________________  _________ ~~~~~~~ -—— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where are integrating factors , as in the pr oof of Lemm a 4 . 7 .

• Exac tly tile same argument applies to

H By hypothesis (4.8) there exists X , X € JRN such that

(i) X .a k* < 0 and A . a L* ha s a po si t ive max imum , and

( i i)  A . a~~ has a positive maximum and ~~~~~ < 0 . We can

conclude , us in g the hy po th esis ( 4 .6) ( a ) ,  that there are constants

t , t > 0 sufficiently large that P 1 k(tA N) > >

and > > 

~~~~~~~~~~ 
By continuity there exists a

suc h that lP l k (A
~ ) 

=

Now consider the (N - 2)  problems 4~~(A)  = 0, i * k , i * ~~~.

Using hypothesis (4.6)(b) , Rig ht-Definiteness implies that for

0 0  ‘ 0 0a ll (X l,A N) € lR~ , there is a unique (A ,,... ,A \ 1 ) € JR such

that A 0 = (A~~,.. .,A~ ) € ~~~~~~~~~~ 
defn S. In particular , choose

A 1 
= ‘P l k (A

N) 
= ‘P 1~ (4p, A~~~ = A~~. Then , since ‘Pk

(A
~
) € Sk 

C S

and ~~(X~ ) € S~, S, the uniqueness of A~~, i * 1 , i * N

i m p l i e s  t ha t  ~k (A~~) = 
~z

(A
~
) € S . This proves the e x i s t e n c e

of an eigenvalue , as desired .

Corollary 4.9: For the three-parameter problem , if a 11 > 0,

a1, < 0; a,1 > 0, a27 > 0; a31 > 0, a32 > 0 ; and C~ 0 ext K3 * ‘P ,
A ext K 11 C * ‘P ,  then S1 0 S2 0 S3 * Q Vn > 0, n > 0,

n3 > 0.

Proof: Take k = 2 , £ = 3. Note that (i) a21 > 0, a31 > 0, and

_ _ _ _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _  ~~~~~~:
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det(a
~ 3
)
~~~2,3 

= a12 < 0

j*l ,3

(ii) det(a
~~
)
~~~2 

= rail  a
121 > 0 and

j*3 La31 a32j

~~ll 
a 1~~det(a 1~

)
~~~3 

= 

a 
> 0, and apply the previous

js3 L
a21 22J

theor em. U

Lxample : 1he following satisfies the hypotheses of Corollary 4 . 7 :

a11 d 12 a 13 1 2 -2 -200

a ,1 a , ,  a2 = 3-2x 2 2 2

I~
I 3l 1

32 a
33j 

2 3-2x 3 2 j
i u a s  (0 , 0 , 1) € C~ 11 ext K. and (-180 ,100 ,1) € ext K 2 0 C3

.

In  t h i s  e x a m p l e  I A I  (x1,x , , x3) = 10 - 8(x,+x 3) + 200.(4-

(3- x 2) (3- x_ ) ) so that A (x1 ,l ,1) = 624 > 0, ~~ (x 1 ,0, 0) 
=

-~~~ 6()  < 0. So Rig ht- Definiteness is not satisfied. Since

(1 ,0,0) € C 1 0 C -,  0 C 3, b y Theorem 5 . 2  (to be proven in Section 5)

the Left- Definiteness condition (4.4) is not satisfied , ei ther .

T h i s  shows  that the corollar y is a new result , and so is the theorem

from which the corollar y is derived . 

-~~~
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Section 5: Define cones K = {X € ]I~~: X.a(x) < 0 for all x € [0,1]} ,

C = {A € iit N : A . a ( x )  < 0 for all x € [0,1]). Since we always assume

that not all of the a~ are trivial , neces sa r i l y  X a (x )  = 0

for  al l  x € [0 ,1] impl i e s  A € a = ~K . In par ticular , 0 € a.

Th ere is a techni que which help s the geome tr ica l  inves t iga-

tion of the cones: Let a(x) = (al(x),...,aN (x)) €]R
N and def ine

the row range F = {a(x): 0 < x < l} = (a clos ed subse t of IRN ) .

Thi s idea , in an abs trac t s e t t ing involv in g quadra tic f orm s, a l so

appears in Atkinson [1, p . 162]

Def i n e , for  any z € JRN a set L (z) = {y € JRN : y.z <

where is the E u c l i d e a n  inne r  p roduc t .  Whenever z * 0,

L (z) is a closed half-space; also L (0) = When z * 0,

m t  L (z) = {y: y . z  < 0} is an open half-space. We see

immediatel y that K = fl
~€7

L(Y). We also see that (i) when

0 € F , n e c e s s a r i l y  C = ; , ( i i )  when 0 C F , necessarily

c = fl
~€~~

int L (y). This leads to

Theorem 5.1: Either C = ~ or C~ = m t  K.

Proof: When 0 C F we must show th at

fl 1€~~in t L ( y ) = C~ m t  K = m t  fl
~ €~

L ( Y ) .

( i )  I f  A ° € C , let -d max
~€~

A °.Y < 0, In = max
~€~ I Y I

and let B be the open ball about A ° of radius d/(2 lr1 ).

Then B c L ( y) for all y € F , so that A € m t  K.

~~~~~~~~~~~~~~~~~~~~~~~~~ - -i-- - - --
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( i i ) If A 0 € m t  K , there is an open ball B about A °

with B C fl €r L(Y). ihen A ° € m t  L (y) for all y € F , so

tiuat A ° € C . U

Recall now condition (4.4), a Left-Definiteness assumption

about the coefficients a .~ for a system of Sturm-Ljouvjlle

problems , and the condit ion of Ri ght-Definiteness , i.e. that the

determinant IAI (x) = IA I (x 1 XN) be sign-defin ite. We have

Theorem 5.2: If fl~~~ 1
c1 * P , then Left-D efiniteness (4.4)

impi ies Right-Def initeness.

Proof: For any  N x N m a t r i x  B = (b. • ) let us define theii

colactor cof B = (h~~.) = ((-l)~~~ de t ( b ) . ) ,  the

s*j

j~ j u~ate a dj  B = (cof B)T, -r = transpose , and the

r a n k  r ( B )  = dim Range (B).

Since there is a A ° € fl~~1cT , there is a rotation 
® which

maps into the positive X 1 -axis , so tha t the f i r s t co lumn of

the matrix A (x) ® consists onl y of neg ati ve en tr i e s , wh ere
A ( x )  = 

~~~~~~~~~~~~~~~~ We will need ti le f ac t  that 

- - --~~- - - - 

- - -~~~~~~ --  — --~~~~~~~~
. ~~~~~~~~ ~~~~~~~~~~~~~~~ 

.

~~~~~ ~~~~ ~~~~~~~~
-
~~~~~

- — -—-
~~~~~~~~~~~~~~

- 
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c o f ( A ( x )  
~~) 

= cof(A(x))O, which can be found in Eves [4, p. 156

#3.10.12 and p. 206 #4.6.7] using the fact that 0
T 

=

Suppose no w tha t con tra ry  to Ri ght-Pc’finiteness there is an

~ such  that A l  (i) = 0, and proceed to show that there is a

c o n t r a d i c t i o n .  Deno te  B A(i)  0.

Since  r ( B )  < N - 1 we can conclude that r(cof B) < 1,

using a fact about ad j  f o u n d  in Eves  [4 , p .  1 5 5] .  Left-

Definiteness (4.4) can be stated as: There exists IjO € 1R~ such

that cof(A(x))~~° € (0 , ”) . . .  -\ (0,~~). This implies that

r (c o f B) > 1 , and this implies that r (cof B) = 1. There must

be a vector 0 * c € ~~ and constants U 1, . . ,a~ € JR such that

cof B = : . ic~ t i l e m u  have

U
1

(cof \(~ ) ) 0 = (cof 13) = (Qc)Tp~~. € (0,~~) 
x x (0,~~) .

From tilis we conclude that u 1,• .. , U~~ ar e al l n o n - z e r o and of

the same sign.

From elementary properties of the determinant , 0 = 
~~ .l bil b~k

whenever k * 1 and det B = Yj~~1b .1b~ 1. Since 0 = det B , we

have for every k

rN * c’N0 = L~~ 
b .  b .  = c L .  b . ~-z • •i= 1 ii  ik k i=1 il i

,

~

• 
- - - -

~~~
--

~~~ 
E-~ -~~~~~~~~T~~~~~~~~ ~~~~~~~~~~~ - ~~- ---~ - - -“ - - - - - -
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-
~ By the use of the rotation 0 we have b 11 < 0 for all i , and

a l l  of the ~~ ‘s are non-zero and of the same sign. Thus ,

ck 
= 0 for all k. This gives r(B) = 0, and there is a

- contradiction. U

Ac kn ow led ge men t

I am grateful to Professor J. K. Hale , my thesis advisor , who

has encouraged me and discussed the work with me.
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